Biodiesel Blend Level Detection Using Ultraviolet Absorption Spectra

نویسندگان

  • A. Zawadzki
  • D. S. Shrestha
  • B. He
چکیده

Biodiesel is often blended with regular U.S. No. 2 diesel. The blending level influences engine performance, emissions, and fuel cold‐flow properties. In this article, ultraviolet (UV) absorption spectroscopy is presented as a reliable and affordable technology for blend level detection based on the absorbance patterns of the aromatic compounds in the proposed spectrum. Blends of biodiesel from six different feedstocks and U.S. No. 2 diesels from five different sources were used to test the robustness of the method. Since the absorbance of undiluted samples was too high to measure reliably, the samples were diluted with n‐heptane. It was found that the feedstock and alcohol used (methyl or ethyl) did not make a significant difference in the absorbance of diluted biodiesel in the 245 to 305 nm range, while absorbance from 254 to 281 nm was correlated with blend level with R2 > 0.99. It was also observed that if the absorbance of the diesel source was known, then a single wavelength could be used to detect the biodiesel blend level. However, a single wavelength was inadequate when the diesel source was unknown because of variation in the level of aromatics in diesel fuel. Absorbances at 265, 273, and 280 nm were used to calculate the absorbance index, which was found to be independent of the diesel fuel used. Using three wavelengths captured the shape information of the absorbance curve and eliminated the variation from the aromatics content. The root mean square error in determining blend level with this method was estimated to be 2.88%, and the R2 for the linear model was 0.99. The method worked well with biodiesel from the different feedstocks tested in this research and was independent of the diesel fuel used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review Study of Performance and Emissions of CI Engine Fuelled with Blend of Biodiesel along with Fuel Nano Additiives

This paper describes the literature review of effect of different nano additives on performance and emission characteristics of diesel engine fuelled with different blends of biodiesel. This study is based on the previous research published articles. It was reviewed that by using nano additives with blend of biodiesel the performance characteristics were improved significantly but the exhaust e...

متن کامل

Iron abundances from optical Fe iii absorption lines in B-type stellar spectra

The role of optical Fe iii absorption lines in B-type stars as iron abundance diagnostics is considered. To date, ultraviolet Fe lines have been widely used in B-type stars, although line blending can severely hinder their diagnostic power. Using optical spectra, covering a wavelength range ∼ 3560 – 9200 Å, a sample of Galactic B-type main-sequence and supergiant stars of spectral types B0.5 to...

متن کامل

A case study of real-world tailpipe emissions for school buses using a 20% biodiesel blend.

Numerous laboratory studies report carbon monoxide, hydrocarbon, and particulate matter emission reductions with a slight nitrogen oxides emission increase from engines operating with biodiesel and biodiesel blends as compared to using petroleum diesel. We conducted a field study on a fleet of school buses to evaluate the effects of biodiesel use on gaseous and particulate matter fuel-based emi...

متن کامل

Studies on Effect of Injection Timing of Graphene Nanoparticles Blended Simarouba Biodiesel Blend on CI Engine

Graphene is a monolayer carbon atoms discovered in the recent past which has inspired researchers in a wide range of applications. It has a surface area as high as 2630 m2/g and thermal conductivity value of 3000 W/mK-1 at room temperature. It is chemically the most reactive form of carbon with one carbon atom exposed to reaction from each side. Stable dispersion of graphene was achieved using ...

متن کامل

Production of palm and Calophyllum inophyllum based biodiesel and investigation of blend performance and exhaust emission in an unmodified diesel engine at high idling conditions

Rapid depletion of fossil fuels, increasing fossil-fuel price, carbon price, and the quest of low carbon fuel for cleaner environment – these are the reason researchers are looking for alternatives of fossil fuels. Renewable, non-flammable, biodegradable, and non-toxic are some reasons that are making biodiesel as a suitable candidate to replace fossil-fuel in near future. In recent years, in m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007